On Using a Fast Multipole Method-based Poisson Solver in an Approximate Projection Method

نویسندگان

  • Sarah A. Williams
  • Ann S. Almgren
  • E. Gerry Puckett
چکیده

Approximate projection methods are useful computational tools for solving the equations of timedependent incompressible flow. In this report we will present a new discretization of the approximate projection in an approximate projection method. The discretizations of divergence and gradient will be identical to those in existing approximate projection methodology using cell-centered values of pressure; however, we will replace inversion of the five-point cell-centered discretization of the Laplacian operator by a Fast Multipole Method-based Poisson Solver (FMM-PS). We will show that the FMM-PS solver can be an accurate and robust component of an approximation projection method for constant density, inviscid, incompressible flow problems. Computational examples exhibiting second-order accuracy for smooth problems will be shown. The FMM-PS solver will be found to be more robust than inversion of the standard five-point cell-centered discretization of the Laplacian for certain time-dependent problems that challenge the robustness of the approximate projection methodology. ∗Department of Mathematics, University of California, Davis †Lawrence Berkeley National Laboratory

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A parallel Poisson solver using the fast multipole method on networks of workstations

We present a parallel Poisson solver on distributed computing environments. In the solver, the parallel implementation of the Fast Multipole Method (FMM) is designed to minimize amount of data communication and the number of data transfers and synchronizations. The experimental results show linear speedup, good load balancing, and reasonable performance under failure and demonstrate the viabili...

متن کامل

A Direct Adaptive Poisson Solver of Arbitrary Order Accuracy

We present a direct, adaptive solver for the Poisson equation which can achieve any prescribed order of accuracy. It is based on a domain decomposition approach using local spectral approximation, as well as potential theory and the fast multipole method. In two space dimensions, the algorithm requires O(NK) work where N is the number of discretization points and K is the desired order of accur...

متن کامل

A New Fast-Multipole Accelerated Poisson Solver in Two Dimensions

We present an adaptive fast multipole method for solving the Poisson equation in two dimensions. The algorithm is direct, assumes that the source distribution is discretized using an adaptive quad-tree, and allows for Dirichlet, Neumann, periodic, and free-space conditions to be imposed on the boundary of a square. The amount of work per grid point is comparable to that of classical fast solver...

متن کامل

Fast System Matrix Calculation in CT Iterative Reconstruction

Introduction: Iterative reconstruction techniques provide better image quality and have the potential for reconstructions with lower imaging dose than classical methods in computed tomography (CT). However, the computational speed is major concern for these iterative techniques. The system matrix calculation during the forward- and back projection is one of the most time- cons...

متن کامل

Mathematical and Numerical Aspects of the Adaptive Fast Multipole Poisson-Boltzmann Solver

This paper summarizes the mathematical and numerical theories and computational elements of the adaptive fast multipole Poisson-Boltzmann (AFMPB) solver. We introduce and discuss the following components in order: the Poisson-Boltzmann model, boundary integral equation reformulation, surface mesh generation, the nodepatch discretization approach, Krylov iterative methods, the new version of fas...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006